Human Fetal Brain-Derived Neural Stem/Progenitor Cells Grafted into the Adult Epileptic Brain Restrain Seizures in Rat Models of Temporal Lobe Epilepsy
نویسندگان
چکیده
Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.
منابع مشابه
O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats
Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...
متن کاملP 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes
Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...
متن کاملO 26: Treatment of Traumatic Brain Injury in Adult Rats with Injection of Human Epileptic Neural Stem Cells and Nano-Scaffold
Traumatic brain injury (TBI) is described by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The use of human stem cells and self-assembling peptide scaffolds suggest huge potential for application in the treatment of TBI. In the present study, we surveyed the beneficial effec...
متن کاملLentiviral vector-mediated transduction of adult neural stem/progenitor cells isolated from the temporal tissues of epileptic patients
Objective(s): Neural stem/progenitor cells (NS/PCs) hold a great potential for delivery of therapeutic agents into the injured regions of the brain. Efficient gene delivery using NS/PCs may correct a genetic defect, produce therapeutic proteins or neurotransmitters, and modulate enzyme activation. Here, we investigated the efficiency of a recombinant lentivirus vector ...
متن کاملGeneration of motor neurons from human amygdala-derived neural stem-like cells
Objective(s): Among several cell sources, adult human neural stem/progenitor cells (hNS/PCs) have been considered outstanding cells for performing mechanistic studies in in vitro and in vivo models of neurological disorders as well as for potential utility in cell-based therapeutic approaches. Previous studies addressed the isolation and culture of hNS/PCs from human neocortical and hippocampal...
متن کامل